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Key Insights from this Research

Dear Reader,
I am pleased to present our research on Artificial Intelligence for 
HVAC optimization in Buildings. As the Schneider Electric™ Sus-
tainability Research Institute, we are dedicated to exploring the 
intersections of energy, technology, and sustainability. This study 
arrives at a critical juncture, where AI advancements are rapidly 
evolving alongside the urgent need to address climate change. 

The building sector, a major contributor to global greenhouse gas 
emissions, presents a significant opportunity for AI-driven HVAC 
optimization. While AI-powered HVAC systems hold great prom-
ise for enhancing energy efficiency and reducing carbon emis-
sions, their comprehensive impact remains understudied. 

This is the starting point of our research, which quantifies the 
Net Digital Impact of AI in a real-world use case in Stockholm, 
Sweden. The Net Digital Impact considers both direct and indi-
rect effects, providing a holistic view of the technology’s potential 
benefits and drawbacks. Building upon the foundational work of 
our Research Institute’s ‘Digital with Impact’ and ‘AI for Impact’ 
reports, published in 2024, we aim to bridge the knowledge gap 
and provide a comprehensive understanding.

To achieve this, we conducted a large-scale, real-world study, ex-
amining over 87 educational properties over a four-year period. 
Leveraging a rigorous scientific approach guided by the ITU-T 
L.1480 standard, we utilized open-source databases, primary 
measurements, and consequential trees. With an annual energy 
expenditure of approximately €29.4 million and an energy con-
sumption of more than 250 GWh per year, our case study can 
be considered a ‘meta’ use case due to its diversity, comprehen-
siveness, scale, and potential for deployment in other contexts. 
 
We aimed to transition from a siloed use case to a valuable refer-
ence for microeconomic and territorial analysis, facilitating future 
use of its results for national and international-level quantifica-
tions. Moreover, this study can serve as a reference meta-case 
study, contributing to a large-scale database that systematically 
collects indirect impact estimates from use case data across var-
ious end sectors. This data, standardized based on study design 
characteristics (e.g., system boundaries) and deployment condi-
tions (e.g., user heterogeneity), will enable statistical analysis of 
the determinants of variation in indirect impact estimates.

Dear Reader,
The results of this meta-case study demonstrate a significant 
positive decarbonization and energy efficiency impact.

First, comparing 2019 and 2023 reveals significant reductions in 
both district heating and electricity usage: district heating con-
sumption decreased by 2,388 MWh from 76,586 MWh to 74,198 
MWh. Electricity consumption dropped by 3,527 MWh from 
39,489 MWh to 35,962 MWh. These reductions suggest the ef-
fectiveness of the implemented optimization solutions in curbing 
energy use across the buildings.

Second, relative energy savings, particularly in electricity con-
sumption, show a marked improvement. District heating achieved 
a 3.12% reduction in total consumption, with an average of 
2.84% savings per property. Electricity usage saw an even more 
substantial decrease of 8.93% in total consumption, averaging 
8.66% savings per property. These figures demonstrate the pos-
itive impact of the optimization measures, particularly in reducing 
electricity consumption.

Third, the energy savings have led to a significant reduction in 
carbon emissions, totaling 259.17 tCO2e between 2019 and 
2023. This translates to an average yearly carbon saving of 64.8 
tCO2e. The emissions reduction is split between 109.87 tCO2e 
from district heating and 149.30 tCO2e from electricity savings. 
Considering the average yearly carbon savings of 64.8 tCO2e, 
the annual carbon cost-benefit ratio exceeds 60 per year, indi-
cating a highly favorable environmental and economic outcome.

These findings, exemplified by the significant reductions in ener-
gy consumption and carbon emissions, underscore the substan-
tial potential of AI-driven optimization strategies, when properly 
designed and operated with purpose, in achieving decarboniza-
tion and energy efficiency goals.

We hope this research represents a step forward in understand-
ing and quantifying the potential of AI in building energy manage-
ment. We invite critical consideration and further discussion as 
we present these findings. 

Thank you for joining us in this exploration. We look forward to 
the discussions and further research that this work may inspire.

Rémi Paccou 
Director of Sustainability Research,  
Schneider Electric™ Sustainability Research Institute 

(1) HVAC: Heating, Ventilation, and Air Conditioning 
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Science Perspectives
Towards Rigorous Net Digital Impacts Assessments

Jan Bieser, PhD in Digitalization & Sustainability
Assistant Professor for Digitalization & Sustainability
Berner Fachhochschule BFH

Foreword

Digitalization, increasingly fueled by the rapid advancement of 
AI, continues to have unprecedented impacts on our patterns 
of production and consumption, with enormous potential for en-
vironmental protection. After all, digital technologies allow us to 
understand our environment better, eliminate inefficiencies in 
systems, and entirely reimagine many parts of our lives. Looking 
forward, the most significant impacts of digitalization are likely still 
ahead, as it remains a young and evolving technology.

This study impressively demonstrates the potential of combining 
smart algorithms, sensor data, and control systems to enable re-
sources and emission savings in buildings. By doing so, we can 
create “win-win-win”-situations, situations that are beneficial for 
people, the environment, and organizations alike. However, tech-
nology can also have unintended environmental consequences. 
For example, digital solutions that optimize road transport of-
ten increase road traffic and, thus, greenhouse gas emissions. 
Therefore, it is essential to conduct thorough assessments of the 
environmental impacts of digital applications so we can identify 
both positive and negative effects early on and address them ef-
fectively.

This case study is an excellent example, assessing the energy, 
resource and CO2-impacts of AI-based optimizations on HVAC 
systems. It also incorporates sensitivity analysis to address in-
herent uncertainties in such types of studies and points to criti-
cal areas for future research. In doing so, it directly contributes 
to reducing the environmental impact of the building sector in 
Stockholm and beyond.

I hope this study inspires other organizations to follow and sys-
tematically assess the environmental consequences of their dig-
italization journeys. By now, there are many guidelines available 
that help organizations do so. If so, we will likely see an increas-
ingly positive effect of digitalization on environmental protection. 
However, this also calls for a more nuanced approach to digitali-
zation and a cultural shift where its actual impacts and perceived 
benefits are critically scrutinized. For a truly sustainable digital fu-
ture, we should not start with the question, “What can we do with 
digital technologies?” but first ask, “What has to change to meet 
sustainability goals?” and only then explore how digital technol-
ogies can help realize these changes. Sound environmental as-
sessments, such as this study, are crucial on this journey.

Jan Bieser, PhD
Assistant Professor for Digitalization & Sustainability
Berner Fachhochschule BFH
https://www.bfh.ch/en/
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As one of Sweden’s leading property managers for schools and 
preschools, SISAB (Skolfastigheter i Stockholm AB) holds a sig-
nificant responsibility in creating sustainable, energy-efficient, 
and healthy learning environments. In alignment with our ambi-
tious climate goals and our commitment to being a role model in 
the property industry, we have embarked on exploring innova-
tive technological solutions to reduce energy consumption in our 
properties.

In this endeavor, we have had the privilege of collaborating with 
collaborating with Schneider Electric and Myrspoven on a study 
focused on the use of AI for optimizing energy use. This study 
aims to investigate how AI-based solutions can enhance the ef-
ficiency of our property operations, reduce our climate impact, 
and simultaneously ensure a high-quality indoor climate for stu-
dents and staff. With AI’s ability to analyze vast amounts of data, 
we can identify inefficiencies and potential improvements that 
might otherwise go unnoticed.

Our sustainability program is central to this initiative. SISAB is 
committed to long-term environmental responsibility, continuous-
ly working on energy efficiency and reducing climate emissions. 
We prioritize technologies and decisions that minimize environ-
mental impact during construction and operations, ensuring our 
schools and preschools are functional, safe, and attractive with 
the least possible environmental footprint. In 2023, we made 
significant strides towards our Vision 2040, focusing on creating 
safe, sustainable, and cost-effective environments. Our efforts 
include implementing the SOLIDA AI-driven system to optimize 
building operations, which has shown promising results in reduc-
ing energy consumption and improving indoor climate. This aligns 
with our broader goals of achieving climate positivity by 2030 and 
contributing to Stockholm’s overall sustainability targets.

We are thrilled with the promising results from this study and look 
forward to integrating these insights into our future work. This 
new technology paves the way for a more sustainable future, 
where we can effectively balance energy use with comfort and 
health. We extend our heartfelt thanks to Schneider Electric for 
their dedication and expertise, as well as to all employees and 
partners who have contributed to this important project. Their 
efforts have been invaluable, and we deeply appreciate their 
commitment.

Erica Eriksson, Head of Energy and Sustainability 
Mats Carlqvist, Head of Operations
Niklas Dalgrip, Director of Operations

Schneider Electric is proud to partner with SISAB in this ground-
breaking study. Our collaboration underscores our shared ambi-
tion to drive sustainability and innovation in building operations. 
Both Schneider Electric and SISAB are committed to creating 
energy-efficient, climate-positive environments that prioritize the 
well-being of occupants. This project exemplifies how our com-
bined efforts can lead to significant advancements in energy 
management and sustainability. 

By leveraging AI technology, we are not only optimizing energy 
use but also setting a benchmark for the industry. We commend 
SISAB for their visionary leadership and dedication to sustainabil-
ity, and we look forward to continuing our partnership to achieve 
our mutual goals of environmental stewardship and operational 
excellence.

We hope this report will inspire other stakeholders in the real 
estate industry to leverage the opportunities that AI presents in 
addressing future sustainability challenges. By working together 
and sharing our insights, we can collectively contribute to creat-
ing a better and more sustainable world.

With this foreword, we also emphasize the importance of contin-
uous innovation and collaboration. It is through these principles 
that we can continue to develop and implement solutions that 
meet not only today’s needs but also those of the future.

Karim Hussain, Product Manager, Digital Buildings

Operational Perspectives
From left to right, Karim Hussain (Schneider Electric), Mats Carlqvist, Erica Eriksson, Niklas Dalgrip (SISAB)
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The impact of digital technologies on carbon emissions and en-
ergy efficiency in buildings is a complex and multifaceted issue. 
While digital solutions offer significant potential for reducing ener-
gy consumption and greenhouse gas emissions, their net impact 
must be carefully considered to create the proper conditions for 
informed debates and policy decisions(1).

AI-powered HVAC systems in buildings have demonstrated 
considerable promise in enhancing energy efficiency and re-
ducing carbon footprints. These systems can decrease energy 
consumption by adapting to usage patterns and integrating low-
er-carbon sources into the electricity mix(2). Machine learning ap-
proaches, such as deep belief networks, have shown increased 
accuracy in temperature forecasting with reduced computational 
expenses compared to traditional physical models(3). Deep rein-
forcement learning has achieved notable success in HVAC con-
trol, with studies reporting up to 20% reduction in energy use 
using minimal sensor inputs(4).

Fault detection and diagnosis in HVAC systems have also bene-
fited from AI applications. Wang et al. utilized a one-class clas-
sification approach for fault detection using temperature read-
ings(5), while deep autoencoders have been employed to simplify 
machine operation information, enabling deep neural networks 
to predict multiple types of faults(6). These advancements in fault 
detection can significantly improve system performance and lon-
gevity.

Occupancy-based adjustments represent another area where 
AI can optimize HVAC operations. Systems can adapt based on 
building or room occupancy, improving both occupant comfort 
and energy use(7) Machine learning algorithms can help these 
systems dynamically adapt to changes in occupancy patterns(8), 
with various techniques such as decision trees(9, 10) and deep 
neural networks(11) being applied to occupancy detection using 
data from sensors, WiFi signals, and appliance power consump-
tion.

Problem Statement 

While these advancements are promising, it is important to note 
that challenges remain in widespread adoption and implemen-
tation. Barriers such as lack of awareness, technical expertise, 
and capital for investment persist. Additionally, the effectiveness 
of AI-powered HVAC systems may vary depending on building 
characteristics, climate conditions, and existing infrastructure.

Building upon our research, the Schneider Electric™ Sustainabil-
ity Research Institute has developed frameworks to quantify the 
environmental impact of digitalization and AI. Our “Digital with 
Impact”(12) report introduced the “Net Digital Impact framework,” 
a holistic approach to quantifying digitalization’s environmental 
footprint. Subsequently, our “AI for Impact: A Method for Guiding 
AI-Energy Applications at Scale”(13) report unveiled the “AI for Im-
pact Compass,” tool to assess AI’s contribution to climate action 
has shown AI-Powered HVAC as a potentially promising solution. 
However, more quantified evidence through use cases is needed.

Hence, we decided to apply the “Net Digital Impact framework” 
to this Stockholm use case. This approach enables us to cap-
ture not only the positive outcomes, such as enhanced energy 
efficiency and reduced carbon emissions, but also any potential 
negative consequences that may arise from the integration of AI 
in HVAC systems. We also sought to identify the key local con-
textual factors which determine whether the impact is solely local 
or potentially extrapolable to other situations, such as different 
countries or building segments.

A key challenge lies in combining the rigor of scientific method-
ologies with the granularity of ground-level data and quantifying 
them within their respective domains of expertise (IoT, AI, Build-
ing Management Systems, HVAC, etc.). Significant effort has 
been invested in ensuring the solidity of the data and its quan-
tification. To support this work, Gauthier Roussilhe(14), an expert 
independent researcher, provided guidance by outlining a frame-
work for combining methodologies with practical implementation 
suggestions. He also critically examined our hypotheses and as-
sumptions, referencing updated databases such as Boavizta(15).
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Exhibit 1. The Net Digital Impact Framework. Schneider Electric™ Sustainability Research Institute.
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How does Stockholm lead the way in climate action?

Sweden stands at the forefront of global sustainability efforts, 
with Stockholm exemplifying this commitment through its am-
bitious climate action initiatives. The nation’s overarching goal 
of achieving net-zero emissions by 2045 is supported by a ro-
bust climate policy framework, while Stockholm’s Climate Ac-
tion Plan 2020-2023 delineates specific strategies to address 
climate change and foster sustainability(16). The capital city has 
demonstrated remarkable progress, reducing greenhouse gas 
emissions by 25% since 1990, despite economic and population 
growth. This achievement stems from strategic investments in 
renewable energy and enhanced energy efficiency across var-
ious sectors. Stockholm’s vision extends further, with the city 
aiming to become fossil fuel-free by 2040, emphasizing a tran-
sition to electric and renewable energy solutions. This approach 
underscores Sweden’s, and particularly Stockholm’s, dedication 
to sustainable urban development. By setting these targets, the 
city not only mitigates its environmental impact but also positions 
itself as a global leader in urban sustainability, providing a model 
for other cities to emulate in the face of climate challenges.

Stockholm has set ambitious targets for the building sector

The Climate Action Plan for Stockholm lays out clear environ-
mental targets for the building and energy sector, recognizing its 
significant role in achieving the city’s climate objectives. Stock-
holm’s Climate Action Plan aims to achieve net-zero emissions by 
2040, with a significant focus on buildings and energy. The city 
plans to reduce energy consumption in new buildings to 55 kWh/
m² and aims to cut overall emissions by at least 240,000 tonnes 
of CO2 equivalent through its district heating system(41).

HVAC Systems as a Critical Factor in Efficiency

Heating, ventilation, and air-conditioning (HVAC) systems play a 
crucial role in the energy consumption and environmental impact 
of buildings, especially in urban areas like Stockholm. As of 2023, 
HVAC systems account for a significant portion of total energy 
use in residential and commercial buildings, ranging from 30% 
to 50% of overall energy consumption(18). Hence, in Stockholm, 
the integration of advanced technologies, including AI and smart 
controls, has begun to transform traditional HVAC systems into 
more energy-efficient and responsive solutions. 

Setting of the Research (1/2)

AI Integration in HVAC Systems: A Game-Changer?

Within this context, AI-powered HVAC systems have emerged 
as a promising solution for Stockholm’s ambitious climate goals. 
Over the past two decades, HVAC systems have transitioned 
from conventional mechanical controls and fossil fuel reliance 
to more efficient designs, driven by regulatory frameworks and 
incentives promoting energy efficiency. The introduction of AI  
in HVAC management represents a paradigm shift in address-
ing the complex control challenges posed by modern and older 
building structures. Companies like Myrspoven(20) are leveraging 
AI to optimize HVAC systems in Stockholm, achieving up to 25% 
reduction in energy consumption and 20% decrease in carbon 
dioxide emissions in buildings(21).

What makes AI-powered HVAC fundamentally different?

AI-powered HVAC systems offer a dual focus on indoor climate 
control and forecasting, as well as energy savings, utilizing ma-
chine learning algorithms to manage multiple factors affecting 
indoor comfort with unprecedented precision. These systems 
have demonstrated remarkable capabilities in accurate indoor 
climate forecasting with reduced computational demands, and in 
achieving significant energy reductions through techniques such 
as Deep Reinforcement Learning(22).  

The implementation of AI in existing buildings presents an op-
portunity for substantial energy savings without the need for dis-
ruptive renovations, addressing the increasing strain on electrical 
grids caused by the rising demand for air conditioning and the 
complexities of integrating on-site generation and energy storage 
systems(23). 

AI-driven HVAC control systems exhibit adaptive learning capa-
bilities, optimizing performance through experiential data and 
autonomously managing controls across diverse building types. 
This approach not only enhances energy efficiency but also re-
duces reliance on skilled engineers, allowing for the reallocation 
of human resources to more strategic tasks(24). The integration 
of AI in HVAC systems offers a promising solution for enhancing 
energy efficiency in grid-interactive buildings, providing flexible 
control methods capable of navigating the increasing complexity 
of modern building systems. 
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Exhibit 2. High-level illustration of the data flows between the AI-Powered solution and the BMS. Schneider Electric
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Setting of the Research (2/2)

Why did SISAB decide to implement an AI-powered HVAC?

SISAB identified three primary objectives: (1) reducing overall 
heating energy consumption and associated costs while main-
taining a consistent indoor temperature of 20°C; (2) implement-
ing a solution capable of integration with existing building infra-
structure and control systems without necessitating extensive 
equipment replacement; and (3) analyzing the voluminous data-
set generated by the sensor network to identify optimal setpoints 
and facilitate real-time adjustments. These objectives formed the 
foundation for SISAB’s exploration of AI-based solutions to en-
hance their building management practices. 

In March 2018, SISAB selected an AI solution developed by Myr-
spoven, with a projected payback period of less than three years. 
This cloud-hosted AI service, later named SOLIDA (SISAB On-
Line Intelligent Data Analysis), was designed to operate in con-
junction with the existing Building Management System (BMS) 
rather than replacing it entirely. This solution design was joint-
ly developed by Schneider Electric and Myrspoven, which also 
made re-use of existing control applications rather than having 
to re-program more than 50 000 applications The AI solution 
functions as a virtual building operator, making adjustments to 
setpoints temperature for HVAC systems and air flow rates for air 
handling units every 15 minutes, in contrast to the less frequent 
manual adjustments typically made by human operators. This 
approach allows the system to move beyond fixed schedules, in-
stead using historical data and predicted future events to make 
informed decisions about equipment control and adjustment.
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Exhibit 3. Example of energy performance, indoor comfort and control panel embedded in the BMS. Schneider Electric

What circumstances have led SISAB to invest in AI?

This study investigates the implementation of an artificial intelli-
gence (AI)-based building management solution by SISAB (Skol-
fastigheter i Stockholm AB), a municipal entity responsible for the 
operation and maintenance of over 600 educational facilities in 
Stockholm, Sweden. SISAB is responsible for all electricity and 
heating, including both HVAC energy and operational energy 
(appliances, lighting, and plug-loads). The entity manages a het-
erogeneous portfolio of educational infrastructure, encompass-
ing preschools, primary schools, and colleges, characterized by 
diverse spatial dimensions (ranging from 100 to 48,000 square 
meters) and varying ages (7-15 years). With an annual energy 
expenditure of approximately €29.4 million and annual energy 
consumption of 250 GWh, even marginal enhancements in ef-
ficiency have the potential to generate substantial cost savings.

Prior to 2013, SISAB faced operational challenges due to the uti-
lization of multiple building management interfaces from various 
vendors, resulting in inconsistent control mechanisms and limit-
ed supervisory capabilities(25). The establishment of a centralized 
operations center in 2013 represented a significant advance-
ment towards achieving unified building control. Furthermore, 
SISAB had invested in a comprehensive network of over 20,000 
temperature and CO2 sensors across their facilities, generating 
an estimated one million data points daily. This extensive data 
collection presented both opportunities and challenges for effec-
tive building management.
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This research adheres to established methodologies and inter-
national standards for evaluating the net environmental impact of 
digital solutions. The study’s framework is primarily informed by 
the ITU-T L.1480 recommendation and the European Commis-
sion’s ‘Net Carbon Impact Assessment’ methodology(27). These 
approaches are grounded in life cycle assessment (LCA) princi-
ples, as delineated in ISO 14040:2006(28) and ISO 14044:2006(29). 
By employing these recognized methodologies, the study en-
sures a comprehensive and standardized approach to assessing 
the environmental implications of AI-powered HVAC systems in 
buildings, facilitating comparability and reliability in the findings.

We cover four environmental issues in this study

1. Greenhouse Gas Emissions (Global Warming Potential)
This aspect is particularly pertinent due to the solution’s potential 
to significantly reduce energy consumption in building heating, 
cooling, and air conditioning systems, which are substantial con-
tributors to global emissions (IPCC, 2022)(30). Concurrently, the 
study considers the emissions associated with the manufacture, 
use, and end-of-life management of the digital systems involved, 
as these can also represent a significant source of greenhouse 
gases (Belkhir & Elmeligi, 2018)(31).

2. Mineral Resource Depletion (Abiotic Resources Depletion)
Refers to the use and depletion of non-renewable fossil fuel re-
sources throughout a system’s life cycle. This impact category 
assesses the consumption of fossil fuels like coal, oil, and natural 
gas as energy sources. This point is key due to the often short 
lifespan and large-scale deployment of such devices, which can 
lead to accelerated resource consumption(32). Units: kg Sb-eq.

3. Energy Consumption (Abiotic Resources Depletion, Fossils)
By assessing the depletion potential of fossil fuels, the study 
provides a comprehensive view of primary energy consumption 
throughout the systems’ life cycle, including considerations of the 
electricity mix used(33). Units: MJ or kWh.

4. AI Life Cycle Analysis
The environmental assessment of AI solutions necessitates a 
specialized methodology which incorporates both the training 
and inference phases of AI models, extending beyond traditional 
LCA techniques and requiring rigorous documentation and anal-
ysis(34). The study by Ligozat et al. emphasizes the importance of 
considering the complete lifecycle of AI systems, including their 
development, deployment, and operational phases. 

We consider two contextual factors

1. Building Renovation
While digital solutions offer optimization potential, traditional 
building renovation programs can also significantly improve en-
ergy performance. These programs, though more expensive and 
time-consuming, can be amortized over extended periods and 
provide long-term benefits(35).

2. Recurring Energy Optimization Interventions
The study acknowledges the possibility of manual optimization 
through frequent energy audits and conservation measures. 
However, it notes that this approach is resource-intensive, reac-
tive in nature, and challenging to implement consistently across 
multiple buildings(36).
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Assessment of AI-Powered HVAC Systems (1/2)

What are the core principles underlying the AI-based solution?

1. AI Learns and Adapts HVAC Schedules for Efficiency

Traditional building HVAC controls rely on fixed schedules and 
reactive control for energy optimization, while Myrspoven’s AI 
solution uses historical and predictive data to determine optimal 
equipment controls. The AI Model Training employs a unique, 
physics-informed AI model that leverages symbolic regression 
(a technique that uses algorithms to discover mathematical 
equations from data) to identify the optimal mathematical equa-
tion for the given dataset. It systematically searches through a 
vast library of mathematical expressions and can even generate 
new equations when necessary, all grounded in physical prin-
ciples. The derived mathematical equation (from the AI model) 
is used in conjunction with Model Predictive Control (MPC) to 
determine the optimal setpoint, considering constraints related 
to indoor climate and energy consumption. This ensures that 
the 15-minute optimization process is also physically informed. 
While this data-driven approach is effective most of the time, 
Myrspoven has hard-coded holiday and vacation schedules. This 
allows the AI model to learn the building’s occupants’ behavior-
al patterns during these special times, enabling adjustments to 
comfort requirements and increased energy savings.

2. AI Enhances HVAC Control Through BMS Integration

The AI solution is implemented in a supervisory control system 
which hosts field servers and devices. These are located in build-
ings where HVAC control equipment is connected. Through the 
supervisory control system, an outbound internet connection 
allows the AI solution to make setpoint adjustments to optimize 
the HVAC control in a secure manner.  Those requirements are 
easily met when the building has a Building Management System 
(BMS), because it offers direct access to the equipment controls 
and data storage. With use of middleware the solution only re-
quires outbound connectivity to the AI service to store data and 
retrieve new AI models for computing optimized setpoints which 
is securely written back to the BMS system. Measurements, sen-
sor, and energy data is matched with weather data and utility 
rates in the cloud to reinforce the knowledge of the AI model. 
Then the AI solution processes the data and infers occupancy 
patterns, behavioral patterns and its impact to energy demand 
and indoor comfort. Based on this knowledge, the solution con-
tinuously and actively adjusts BMS settings for the most cost and 
resource effective operations while also improving indoor com-
fort.

How was the reference scenario constructed?

To assess the potential impact of the solution, we established 
a reference scenario that simulates the situation without the 
solution’s implementation. This counterfactual scenario incorpo-
rates SISAB’s existing energy efficiency initiatives, such as on-
site and remote energy audits, and setpoint adjustments. While 
these measures would contribute to some energy savings, the 
complexity of building operations and potential limitations would 
constrain the overall impact. Due to the challenges in quantifying 
the specific savings from these existing initiatives, we adopted a 
Business-As-Usual (BAU) scenario as a baseline. This scenario 
assumes that SISAB would have maintained its standard oper-
ating procedures without implementing additional energy-saving 
measures.
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How did we design the AI-powered scenario?

The AI solution was deployed to optimize building operations, in-
cluding heating, cooling, and air conditioning, across 87 of the 
120 properties in Stockholm, Sweden. Thirty-three properties 
were excluded due to insufficient energy data for 2019 and 2023 
or because they were involved in various energy conservation 
projects that complicated the attribution of savings to the AI solu-
tion alone. The solution is trained using data from 9,901 sensors, 
with 5,496dedicated to indoor temperature measurement and 
4,405 to indoor carbon dioxide (CO2) levels. These sensors were 
installed prior to the AI solution’s deployment and are comple-
mented by weather and climate data from Stockholm. 

A tailored model was developed for each property and is re-
trained daily to adjust temperature setpoints for HVAC systems 
and air flow rates for air handling units every 15 minutes. This 
solution utilizes Microsoft Azure clusters for training and infer-
ence, located in Northern Europe, with data transmitted daily be-
tween the building management system (BMS) and the servers 
of SISAB and the solution provider.
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Assessment of AI-Powered HVAC Systems (2/2)

The solution aims to reduce energy consumption associated with 
heating, cooling, and air conditioning in buildings by dynamically 
and precisely adjusting HVAC setpoints to achieve optimal indoor 
comfort with minimal energy demand, considering weather, geo-
graphical, and architectural factors. This solution has been itera-
tively implemented across these properties since 2019, providing 
four years of data to evaluate its potential and actual impacts.

We have defined the following scope of this assessment

The evaluation includes the digital systems modified and mobi-
lized by the deployment of the AI solution. It aims to assess both 
the direct effects of these systems and the indirect effects on the 
management of properties overseen by SISAB. The analysis con-
siders the impacts linked to the manufacture, use, and end-of-
life of certain building management system (BMS) components 
that have been modified, as well as the IoT systems that enable 
the transmission of HVAC equipment data and sensor measure-
ments. Additionally, it evaluates the resources mobilized by the 
AI solution, including those related to data centers and networks. 
While all potential indirect effects are studied, only those with 
quantifiable data and significant materiality are included in the 
modeling. See Exhibit 4 for detailled consequential tree.

Exhibit 4. Consequential Tree of the Stockholm’s AI-Powered HVAC case. Schneider Electric

Note: The consequential approach in Life Cycle Assessment 

(LCA) aims to evaluate the environmental impacts resulting 

from changes in a product system due to specific decisions. 

Unlike attributional LCA, which focuses on average impacts, 

consequential LCA examines marginal or incremental effects 

linked to production changes. It typically adopts a long-term 

perspective, assuming that short-term supply constraints have 

been overcome. This method uses market information to identi-

fy affected activities but is not a full economic equilibrium mod-

el. Consequential LCA is particularly useful for decision-making 

processes as it attempts to model realistic environmental con-

sequences of choices, aligning with sustainable development 

goals. It focuses on how environmentally relevant flows change 

in response to decisions, typically represented by changes in 

demand for a product or service.
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Direct Effect #1: Assessing the BMS system 

The Building Management System (BMS) typically consists of 
several components, including a SpaceLogic™ AS-P Automation 
Server, a third-party controller, HVAC equipment, mechanical 
components, the EcoStruxure™ Building Operation Enterprise 
Software, and the EcoStruxure™ Building Operation SmartCon-
nector Software. In comparing the reference scenario to the 
scenario with the solution, only two elements are modified: the 
HVAC system, which is optimized through the AI solution, and the 
third-party controller, which experiences a reduced lifespan due 
to its limited memory capacity being strained by increased data 
writing from the new solution.

The optimization provided by the AI system results in lower elec-
tricity consumption for HVAC systems, including electrical radi-
ators, which is considered an indirect effect of optimization and 
does not necessitate a separate environmental assessment. 
However, the accelerated end-of-life of the third-party controllers 
requires an environmental assessment to evaluate the additional 
environmental costs associated with their more frequent replace-
ment. 

Using data from Schneider Electric regarding the fleet of 
third-party controllers in operation, we calculated the average 
environmental impact of these controllers. Assuming a lifespan 
of 10 years and utilizing a Swedish electricity mix during their 
operational phase, we also considered that these controllers are 
situated in a dry, cold, clean environment within enclosed panels. 
The total life cycle impact has been determined as follows:

	

Direct Effect #2: Assessing the IoT system 

There are 9,901 sensors deployed in the properties managed 
by SISAB for this AI solution. These include THS-1002-1 devic-
es (used as temperature and CO2 sensors) and AR-0002-1 Air 
Receivers from EcoGuard, which collect the data sent by the sen-
sors. On average, there are 60 sensors per property, distributed 
across 120 properties totaling 1 million square meters of space. 
This equates to approximately one sensor per 140 m² of floor 
space. It can be assumed that there is one Air Receiver per prop-
erty. In the absence of comprehensive life cycle analyses or car-
bon footprint assessments for IoT devices, an alternative meth-
odology has been employed to approximate their environmental 
impact. Pirson et al. introduced a novel approach that estimates 
the environmental consequences of both the manufacturing and 
end-of-life phases of these devices. This method evaluates the 
average impact of components integrated into a device to exe-
cute specific functions, such as connectivity.
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Assessing the Direct Digital Effects (1/2)

Life cycle impacts - BMS System

kg CO2 eq. kg SB eq. kWh

1 third-party controller 67.83 0.0011 314.93

1 controller per year 
(10-year life span)

6.78 0.0001 31.49

Total impacts for all 
controllers (life cycle)

51,077 0.80 237,144

Total impacts for all 
controllers per year

5,107.75 0.08 23,714

Exhibit 5. Life Cycle Impact of the BMS System

The approach involves the following steps: identification of device 
functions, assessment of component impacts for each function, 
and input of hardware specification levels (HSLs) for individual 
functions. For the purpose of this analysis, sensors and receivers 
are presumed to have a mean operational lifespan of 15 years. 
This assumption allows for a standardized timeframe when con-
sidering the long-term environmental implications of these devic-
es. Detailed information about the calculation model is provided 
in the appendix.

Our environmental impact assessment of the IoT system fo-
cuses on the manufacturing and End-of-Life (EoL) phases, as 
these represent the most significant impacts given our data con-
straints. While this method doesn’t replace a comprehensive Life 
Cycle Assessment (LCA) and excludes use-phase impacts, it’s 
the best available approach considering our limitations. We lack 
data on the devices’ operational electricity consumption, but giv-
en that battery-powered sensors typically have very low energy 
needs and Sweden’s electricity mix has a low carbon intensity, 
the use-phase impact is likely minimal. The manufacturing and 
EoL impacts of the IoT system are as follows: 

In attribution-based environmental impact assessment, a portion 
of the Internet of Things (IoT) system’s footprint must be allocated 
to the AI system it supports. This is because the AI system relies 
on data from IoT sensors for its operation. 

However, this allocation is not considered in short-term conse-
quential analysis approaches. Determining an appropriate allo-
cation key for this footprint presents challenges. Based on our 
research, 9,901 out of 20,000 sensors were utilized in training 
the AI solution, and approximately 120 gateways were involved. If 
we assume the AI solution used these sensors and gateways for 
5 years out of their 15-year lifespan, a simplistic approach might 
suggest allocating 33% of the footprint of the used equipment 
to the AI system. However, this equipment and its data serve 
multiple purposes beyond the AI system, necessitating a more 
nuanced allocation.

Given the complexity and lack of a definitive allocation method, 
we have adopted a conservative estimate of 10% attribution. 
This choice aims to acknowledge the AI system’s reliance on the 
IoT infrastructure without overstating its impact. To assess the 
implications of this decision, we conduct a sensitivity analysis, 
varying this allocation percentage to understand its effect on the 
overall environmental impact assessment of the AI system. This 
approach balances the need for attribution with the recognition of 
the multi-purpose nature of IoT in complex systems.

Manufacturing and EoL impacts - IoT system

kg CO2 eq. kg SB eq. kWh

Ecoguard THS-1002-1 (1) 2.00 0.0001 8.91

per year (15 year lifespan) 0.13 0.00 0.61

for 9.901 units, per year 1323.01 0.06 6467

Ecoguard AR-0002-1 (1 unit) 10.09 0.0004 50.53

per year (15 year lifespan) 0.82 0.000004 3.49

for 103 units, per year 80.48 0.0026 370.84

Exhibit 6. Manufacturing and EoL impacts for the IoT system
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Direct Effect #3: Assessing the AI system 

The AI System in this study utilizes cloud computing resources for 
both training and inference phases. Specifically, an Azure Cluster 
CPU (Standard_E8ds_v4) is employed daily for model training, 
running 230-second sessions for each of the 100 managed prop-
erties. For setpoint optimization, an Azure Cluster GPU (Stan-
dard_NC8as_T4_v3) performs inferences every 15 minutes, 
with each inference lasting 100 seconds per property, totaling 
1920 inferences daily. Additionally, the system stores 7.5 GB of 
data annually and transmits 333.8 MB daily for training and 3.62 
MB for inferences.Assessing the environmental impact of an AI 
system is complex, requiring consideration of specific lifecycle 
stages. Luccioni et al. propose an approach which incorporates 
model training and deployment (inference) phases alongside tra-
ditional lifecycle stages. In this case study, the deployment phase 
corresponds to the continuous optimization of setpoints.

Two distinct methodologies were employed to estimate the envi-
ronmental footprint of the AI system, serving to test and validate 
each approach:

1. The first method utilizes public data from the NegaOctet da-
tabase and its associated Life Cycle Assessment (LCA) meth-
od. While not aiming to produce a standardized LCA, this ap-
proach models the Azure clusters used by the AI solution as 
medium-sized virtual machines: two for computing and one for 
storage.

2. The second approach employs Boavizta’s open-source ap-
proach, derived from the ‘Green Cloud Computing’ study com-
missioned by Umweltbundesamt. This method facilitates more 
precise modeling of cloud infrastructure components, particular-
ly for CPU and storage. However, due to data limitations, GPU 
computing is assumed equivalent to CPU computing in both ap-
proaches, potentially underestimating results. The assessment 
encompasses manufacturing and use phases, utilizing the EU-
27 average electricity mix due to uncertain datacenter locations. 
While this approach has limitations, it represents the most robust 
option currently available for modeling AI system environmental 
impacts.

Detailed information on the calculation model, in appendices.

The calculation method and the Boavizta data are entirely open-
source, allowing for a complete audit of the process. This trans-
parency enables the improvement of results over time for future 
assessments if any errors become apparent. It is important to 
note that these results are likely underestimated due to the fact 
that the cluster using a Tesla-4 GPU has not been accurately 
modeled in this assessment.

Direct Effect #4: Assessing the Networks

Data is transmitted daily among the servers in the Building Man-
agement System (BMS), SISAB servers, and Mysproven servers. 
These transmissions are included in the analysis.

Utilizing the AI solution necessitates daily data transfers, which 
can be incorporated into the impact assessment. The impact of 
data transfer is typically calculated by translating into the volume 
of data transferred (in GB) to electricity consumption (in Wh), 
as well as considering lifecycle impact factors associated with 
the network used (whether fixed or mobile, and including core 
network considerations). It is important to note that this calcula-
tion employs an attribution logic, which distributes impacts retro-
spectively. In a short-term consequential approach, the impact 
of data transfer might not be considered due to the volume of 
data involved. For this analysis, we have adopted an impact fac-
tor of 0.069 kWh per GB for the use phase, along with multi-cri-
teria factors for the manufacturing and end-of-life phases. The 
data utilized in this assessment comes from the NegaOctet and 
ADEME/Arcep databases.

We estimate that the daily data transmission for training amounts 
to 333.8 MB, while optimization involves 3.62 MB per day, with 
both operations occurring daily. The impact factors for manufac-
turing and end-of-life are based on EU-27 data rather than Swed-
ish data because the transmitted data is sent to servers located 
in Northern Europe. The electricity consumption associated with 
the use phase is calculated using the Swedish energy mix. This 
results in a total of 123 GB of annual data transfers, leading to a 
relatively small environmental footprint, as detailed below. Addi-
tional information on the calculation methodology can be found 
in the appendices.

Exclusions. The scope of this analysis includes only the elements 
of the Building Management System (BMS) which are modified 
by the introduction of the AI solution. Specifically, this encom-
passes the electricity consumption of HVAC systems and the 
environmental footprint of third-party controllers. The AI system 
modeling is limited to the manufacturing and use phases, with the 
end-of-life phase excluded due to missing data in the Boavizta 
approach, which prevents comparison with the NegaOctet ap-
proach. For the IoT system, only the manufacturing and end-of-
life phases are modeled.

Limitations. While the assessment presents a valuable analysis, 
several limitations influence its precision. The diverse range of 
third-party controllers necessitates the use of average environ-
mental impact models due to the absence of specific Life Cycle 
Assessments. Additionally, constraints in data availability for the 
GPU cluster and data center locations limit the accuracy of the AI 
system modeling. The IoT system modeling is further constrained 
by the absence of usage phase data and power specifications. 
These limitations highlight the challenges inherent in conducting 
comprehensive environmental assessments of complex techno-
logical systems, especially when dealing with diverse compo-
nents and uncertain operational conditions.
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Assessing the Direct Digital Effects (2/2)

Manufacturing and Use impacts for AI system

kg CO2 eq. kg SB eq. kWh

AI system per year 1061.26 0.017 9256.02

Life cycle impacts of network use

kg CO2 eq. kg SB eq. kWh
Total per year 14,38 0,00014 115.42

Exhibit 7. Luccioni et al. Life Cycle Stages for AI System

Exhibit 8. Manufacturing and Use impacts for the AI System

Exhibit 9. Life Cycle impacts for the Networks
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Indirect Effect #1: Optimisation of HVAC setpoints   

The AI solution has been specifically deployed to enable more 
precise and dynamic control of temperature and indoor air quality 
in SISAB-managed buildings, utilizing data from existing sensors. 
This solution incorporates weather, climate, and utility rate data 
to create and continuously optimize models for each building. 
The improved control of temperature and air flow can lead to re-
duced energy consumption for heating and cooling, as well as 
decreased electricity consumption by air handler fan motors.

Energy consumption records for heating and electricity are avail-
able from 2018 to 2023. For this analysis, we compared 2019 
(pre-AI system deployment) with 2023 (post-deployment), ex-
cluding intermediate years due to atypical building usage during 
the Covid-19 pandemic. Energy and electricity consumption data 
were weather-adjusted to isolate the solution’s benefits from tem-
porary weather condition changes. In 2019, the buildings in the 
study consumed 76,586 MWh for heating and 39,489 MWh of 
electricity. By 2023, these figures decreased to 74,198 MWh for 
heating and 35,962 MWh for electricity, representing relative en-
ergy saving of 3.12% and 8.93%, respectively. On average, the 
relative energy savings per property were 2.84% for heating and 
8.66% for electricity.

Assuming constant carbon intensity for the district heating net-
work (46 kgCO2e/MWh) and electricity (42.3 gCO2e/kWh), the 
AI solution’s optimization effect resulted in a gross reduction of 
259.17 tCO2e in greenhouse gas emissions for 2023 (109.87 
tCO2e from heating and 149.3 tCO2e from electricity).

While this analysis focuses on GHG emissions due to limited 
multi-criteria environmental data for Stockholm’s heating net-
work, it’s important to note that reductions likely occur across 
other environmental indicators as well.

Indirect Effect #2: Faster change of third party controllers

The AI solution’s impact on third-party controllers’ obsolescence 
has been considered in this study. SISAB’s third-party controllers 
utilize EPROM memory with a 100,000 write limit, where each 
setpoint change corresponds to one write. Historically, HVAC  
setpoints were adjusted monthly, resulting in approximately 12 
writes per year, well within the memory’s capacity. However, the 
AI solution’s capability to change setpoints every 15 minutes sig-
nificantly accelerates this process, potentially leading to prema-
ture hardware obsolescence.

In the reference scenario, 753 third-party controllers (six per 
property) have an average lifespan of 10 years with 12 annual 
writes. The AI solution scenario assumes 4 inferences per hour

over 253 working days annually, resulting in 24,288 entries per 
year. This reduces the theoretical controller lifespan to just over 4 
years, creating an obsolescence factor of 2.43 compared to the 
original 10-year lifespan. This accelerated replacement cycle in-
creases the annual greenhouse gas (GHG) impact by 7.3 tCO2e 
per year. It’s important to note that this calculation is based on a 
theoretical model. The actual impact may vary depending on fac-
tors such as the potential for 24-hour setpoint changes and the 
exact usage patterns of the buildings. SISAB maintains a stock 
of replacement controllers, but this issue may persist until they 
upgrade to a new generation of third-party controllers with im-
proved specifications, potentially altering the environmental foot-
print and lifespan of this equipment. A sensitivity analysis of these 
assumptions will be conducted to better understand the range of 
potential impacts.

Indirect Effect #3: Less technician’s travels by reduction of oc-
cupants complaints

The potential reduction in technicians’ travel due to fewer occu-
pant complaints was investigated as a possible indirect effect of 
the AI solution’s improved HVAC setpoint adjustments. In theory, 
better-regulated indoor environments could lead to fewer com-
plaints, potentially resulting in fewer or shorter interventions by 
field technicians. However, according to data provided by SISAB, 
the average daily travel distance for technicians (approximately 
40 km) has not shown significant variation. Consequently, this 
potential effect has been excluded from the current analysis due 
to the lack of observable change in technician travel patterns.

This finding highlights the complexity of assessing indirect effects 
in building management systems, where improvements in one 
area may not necessarily translate into measurable changes in 
related operational aspects. It also underscores the importance 
of comprehensive data collection and analysis in evaluating the 
full impact of technological interventions in building management.

Indirect Effect #4: Increased use of SISAB servers

The implementation of the AI solution has potentially led to a 
5-10% increase in CPU and memory usage on the SpaceLogic™ 
AS-P Automation Server, as reported during interviews. Howev-
er, due to the lack of precise data, it was not feasible to accu-
rately model this effect in the current analysis. The environmental 
impact of this increased server usage is likely to be minimal for 
two primary reasons: the AS-P Automation Servers have rela-
tively low electricity consumption, and Sweden’s power sector 
has an exceptionally low carbon intensity, estimated at approx-
imately 42.3 grams equivalent of CO2 per kilowatt-hour in 2023. 
Sweden’s electricity generation is predominantly derived from 
low-carbon sources, with 95.88% of its electricity coming from 
a mix of hydropower (41.93%), nuclear energy (30.84%), wind 
energy (21.99%), and solar power (1.12%). 
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Assessing the Indirect Digital Effects (1/2) 

Optimization effect

2019 
(MWh)

2023 
(MWh)

Relative 
savings 
(%)

Avg. relative 
savings per 
property (%)

District 
heating

76,586 74,198 -3.12% -2.84%

Electricity 
39,488 35,962 -8.93% -8.66%

Exhibit 10. Indirect Effect #1 - Optimization Effect

Obsolescence effect

kg CO2 
eq.

kg SB eq. kWh

Added impacts per year 
due to faster replacement 
of 3d party controllers 7,297.95 0.11 33,883

Exhibit 11. Indirect Effect #2 - Obsolescence Effect



AI-Powered HVAC in Educational Buildings

Given these factors, the marginal increase in server usage is ex-
pected to have a negligible impact on overall emissions. Conse-
quently, this effect has been excluded from the current environ-
mental assessment. However, as Sweden continues to electrify 
other sectors and increase its demand for low-carbon electricity, 
future assessments may need to reconsider the impact of in-
creased server usage, especially if it becomes more significant 
or if more precise data becomes available.

Indirect Effect #5: Reinvestment of savings due to reduced en-
ergy consumption

The implementation of the AI solution for optimizing HVAC sys-
tems in SISAB-managed buildings has led to significant energy 
savings, resulting in substantial financial benefits. SISAB’s annual 
energy budget of 340 million SEK (approximately €29.4 million 
as of November 15, 2024) and energy consumption of 250 GWh 
has seen a notable reduction due to decreased energy con-
sumption. While a portion of these savings is reinvested in the AI 
solution itself, the allocation of the remaining funds presents both 
opportunities and challenges from an environmental perspective.

The potential uses for these savings include building renovations, 
retrofitting projects, or other operational improvements, which 
could further enhance energy efficiency and reduce environmen-
tal impact. Conversely, these funds could be invested in financial 
assets with varying environmental implications. The environmen-
tal impact of these reinvestment decisions is complex and can be 
either positive or negative, depending on the specific allocation 
choices. The ITU-T L.Supplement 54 provides a framework for 
calculating the indirect rebound effect of such reinvestments us-
ing a monetary factor approach (expressed in kgCO2eq./€). 

However, due to the lack of precise data on the reinvested 
amount and the contractual details of the AI solution, this ef-
fect has not been quantified in the current study. The potential 
environmental impact of these reinvestment decisions remains 
an important consideration for future assessments, as it could 
significantly influence the overall environmental footprint of the 
energy-saving initiative. 

Indirect Effect #6: Change on Stockholm energy grid

The implementation of AI-driven energy optimization in SISAB’s 
buildings has potential implications for Stockholm’s energy grid, 
particularly during peak demand periods. By reducing energy 
consumption in these buildings, especially during high-demand 
times, the AI solution contributes to a decrease in overall energy 
demand on the city’s grid. This reduction could potentially lower 
the carbon intensity of the marginal electricity mix by reducing 
the need for higher-emission power sources typically used to 
meet peak demand.

However, quantifying this effect accurately requires a compre-
hensive analysis of Stockholm’s electricity mix, including detailed 
data on power sources, demand patterns, and grid management 
strategies. Such an analysis would constitute a significant study 
in its own right, requiring extensive data collection and complex 
modeling. Due to the challenges in accessing the necessary data 
and the time constraints of the current study, this potential effect 
on the broader energy grid has not been included in the present 
analysis. Future research could explore this aspect to provide a 
more comprehensive understanding of the AI solution’s impact 
on urban energy systems and carbon emissions.
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Assessing the Indirect Digital Effects (2/2) 
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Results

The AI-powered building management solution demonstrates 
significant potential for reducing environmental impact, particu-
larly in areas directly amenable to optimization. Comprehensive 
modeling of all considered effects reveals a substantial positive 
net environmental impact, with an annual reduction of 64.8 
tCO2e. This corresponds to a favorable carbon cost-benefit ratio 
exceeding 1:60, indicating that for every unit of carbon cost in-
vested, 60 units of carbon benefit per year are realized.

Energy savings and electricity consumption reductions are par-
ticularly noteworthy:
•	 District heating: Decreased from 76,586 MWh to 74,198 

MWh, a total reduction of 2,388 MWh (3.12%) over four 
years, or 597 MWh per year.

•	 Electricity: Reduced from 39,489 MWh to 35,962 MWh, a 
significant drop of 3,527 MWh (8.93%) over four years, or 
881.75 MWh per year.

These results align with industry benchmarks, as AI-powered 
HVAC systems have been shown to reduce energy waste in com-
mercial buildings by up to 30%, with smart systems typically re-
ducing electricity bills by 18% or more(39). While SISAB’s respon-
sibility for all electricity and heating, including both HVAC energy 
and operational energy (appliances, lighting, and plug-loads), is a 
broader scope than that of a typical building owner, the achieved 
savings are still significant.

In terms of Global Warming Potential (GWP), direct effects from 
the AI system (1.06 tCO2e), IoT system (0.14 tCO2e), and net-
works (0.014 tCO2e) contribute minimally to emissions. The 
optimization of heating and electricity consumption results in a 
substantial reduction of 259.17 tCO2e over four years, or 64.8 
tCO2e annually. However, the accelerated obsolescence of 
controllers adds 7.30 tCO2e, resulting in a net total reduction of 
250.65 tCO2e over four years.

Regarding Abiotic Depletion Potential, the AI system and IoT de-
vices contribute marginally to both element and fossil fuel de-
pletion. However, accelerated obsolescence of controllers signifi-
cantly increases both ADP-e and ADP-f, leading to a net increase 
of 0.14 kg Sb eq. and 43,938.52 kWh, respectively.

These results highlight the multifaceted nature of environmental 
impacts and the importance of a holistic approach to sustain-
ability. While the AI solution demonstrates significant benefits in 
greenhouse gas reduction and energy savings, the increases in 
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Quantifying the Net Digital Impact

Net Digital Impact Calculation - Difference between 2019 and 2023

t CO2 eq. kg SB eq. MWh

Direct effects
AI system 1.06 0.016 9.26

IoT system 0.14 0,00688 0.68

Networks 0.014 0.00013 0.12

Indirect effects
Optimization (heating and electricity consumption) - 259.17 N/A -5,915

Obsolescence (faster controllers change) 7.30 0.11 33.88

Net Digital Impact -250.65 0.14 -5,871

Future assessments incorporating multi-criteria data for the opti-
mization effect could provide a more comprehensive evaluation, 
potentially revealing additional areas where benefits outweigh 
costs. Such holistic analyses will be crucial in guiding the devel-
opment of increasingly sustainable and effective building man-
agement technologies. 

Sensitivity Analysis

To assess the robustness of the study’s key assumptions, we 
conducted a sensitivity analysis by significantly varying these pa-
rameters:

Accelerated Controller Replacement (Maximum Scenario):
We tested an extreme scenario where temperature setpoints are 
adjusted four times per hour, continuously, throughout the year 
(365 days). This maximizes the obsolescence effect, resulting 
in an obsolescence factor of 3.5 and an annual impact of 7.3 
tCO2e on the greenhouse gas (GHG) indicator. This analysis 
reveals that controller obsolescence is a factor of relative impor-
tance in assessing the solution’s net environmental impact.

Maximum IoT System Allocation
By attributing 100% of the annual impact from the 9,901 sensors 
and 120 gateways used for AI training and inference (instead 
of the initial 10% allocation), the impact on the Global Warming 
Potential (GWP) indicator increases from 0.06 to 0.63 tCO2eq. 
This variation has a minimal effect on the system’s net impact, 
validating the original 10% allocation assumption as a reasonable 
estimate that does not significantly change the overall result.

Increased Data Traffic
The base model assumed daily data transfers of 333.8 MB for 
training and 3.62 MB for inference across the entire solution. We 
tested a scenario where these volumes apply per property, re-
sulting in 33.38 GB for training and 0.36 GB for inference daily. 
This escalation adds 1.43 tCO2e, 0.61 kgSbe, and 41,552.19 
MJ to the total network impacts. This analysis indicates that data 
traffic is a factor of relative importance in assessing the net envi-
ronmental impact of the system.

These sensitivity analyses demonstrate that while certain as-
sumptions can influence the magnitude of the environmental im-
pact, the overall conclusion of the AI solution’s positive net impact 
remains robust across various scenarios.Exhibit 12. Net Digital Impact Calculation
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Key Insights On The Results

Key Insight 1: Demonstrating Significant Positive Impacts with a 
Favorable Carbon Cost-Benefit Ratio of 1:60 per year

Our study reveals the substantial potential of AI-Powered HVAC 
systems in buildings, showcasing notable energy savings and 
carbon emission reductions. Between 2019 and 2023, we ob-
served a 3.12% reduction in district heating consumption and 
an impressive 8.93% decrease in electricity consumption. These 
improvements translated to significant carbon emission reduc-
tions: 109.87 tCO2e from district heating and 149.30 tCO2e 
from electricity, totaling 259.17 tCO2e over the four-year period. 
The results indicate a favorable 1:60 carbon cost-benefit ratio 
per year, highlighting the efficiency of the system. While these 
findings are encouraging, we recognize the importance of further 
research to validate these effects across diverse building types 
and geographical locations, paving the way for more widespread 
adoption and optimization of AI-powered HVAC systems.

Key Insight 2: Establishing a Comprehensive Meta-Study for Fu-
ture Reference and Extrapolation

This study serves as a valuable meta-analysis, demonstrating the 
substantial environmental benefits of AI-powered HVAC systems, 
even in contexts with pre-existing efficient systems. The aver-
age yearly carbon saving of 64.8 tCO2e underscores the signif-
icant impact of these technologies. Notably, these results were 
achieved with total energy consumption reductions of 3.12% for 
district heating and 8.93% for electricity. These findings provide a 
robust reference point for estimating potential benefits in diverse 
settings. By offering insights that can be cautiously extrapolated, 
this study lays the groundwork for future research, emphasizing 
the importance of exploring AI’s role in enhancing HVAC efficien-
cy and sustainability across various contexts.

Key Insight 3:  Unveiling the Potential for Enhanced Carbon Re-
ductions in Diverse Contexts

Our research reveals the potential for even greater carbon re-
ductions in environments with more demanding heating, cooling, 
or air conditioning requirements. The study highlights how local 
energy mix significantly influences achievable carbon reductions, 
with non-renewable energy sources offering opportunities for 
more substantial improvements. For instance, our comparative 
analysis between Stockholm and Boston revealed that imple-
menting the same solution in Boston could yield carbon emission 
savings of 1,765.88 tCO2e per year, compared to 250.6 tCO2e 
in Stockholm. This represents an impact more than 7 times higher 
or 604% greater in Boston, USA compared to Stockholm, Swe-
den(37, 38). This striking difference underscores the importance of 
considering local environmental conditions and energy sources 
when implementing AI-powered HVAC solutions, opening ave-
nues for maximizing environmental benefits across diverse geo-
graphical and climatic contexts.

Key Insight 4: Advancing System-Wide Approaches for Efficient 
AI Integration

Our research has identified key challenges in integrating AI sys-
tems with legacy HVAC infrastructure, particularly in areas such 
as memory usage, computational intensity, and lifecycle limita-
tions. These findings underscore the importance of adopting a 
holistic, system-wide approach when implementing AI solutions 

in building management. By highlighting these integration hur-
dles, our study paves the way for future research focused on 
developing innovative strategies to overcome these challenges. 
This insight encourages a more comprehensive and nuanced ap-
proach to AI implementation in HVAC systems, potentially lead-
ing to more efficient, sustainable, and adaptable building man-
agement solutions. 

Key Insights On The Method

Key Insight 5: Enhancing Reference Scenario Definition for Ro-
bust Comparisons

Our study highlights the pivotal role of well-defined reference sce-
narios in accurately assessing the impact of AI-enhanced HVAC 
systems. While our current research provides valuable insights, 
we recognize the opportunity for improvement in baseline diag-
nostics. Future studies can build upon this foundation by incorpo-
rating comprehensive energy audits, thereby enhancing the pre-
cision and reliability of comparative analyses. This refinement will 
contribute significantly to the evolving field of AI-powered building 
management and energy efficiency.

Key Insight 6: Leveraging the Louvain Method for Efficient IoT 
Prototyping

The application of the Louvain method(40), utilizing the HSL mod-
el, has demonstrated promising potential for rapid prototyping 
of AI-powered HVAC systems. This approach offers an efficient 
solution for modeling IoT systems in the absence of detailed 
specifications. While further validation is warranted, our findings 
suggest that this method could accelerate the development and 
implementation of AI-driven building management solutions, po-
tentially leading to more rapid advancements in energy efficiency 
and sustainability.

Key Insight 7: Advancing Impact Assessment through Compar-
ative Methodologies

Our research employed a dual-method approach, combining 
the established Negaoctet method with the innovative Boavizta 
method, particularly for cloud instance calculations. This com-
parative strategy has yielded a more comprehensive understand-
ing of the AI system’s environmental impact. The promising re-
sults pave the way for further exploration and refinement of these 
methodologies. Continued research in this area has the potential 
to enhance the accuracy and depth of impact assessments for 
AI-powered HVAC systems, contributing to more informed deci-
sion-making in sustainable building management.
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High Level Conclusion And Limitations Of This Study

This study provides valuable insights into the environmental 
impact of AI-powered HVAC systems in educational buildings, 
focusing on two key indirect effects: optimization and obsoles-
cence. While these effects are among the most significant, we 
acknowledge that other unmodeled effects may influence the 
overall results. The study demonstrates the potential for signifi-
cant net positive impact through AI optimization, particularly by 
adjusting the frequency of setpoint changes.

However, we acknowledge several limitations and areas for future 
research. The context-dependent nature of our results means 
they may vary across different building types and geographical 
locations, necessitating further studies in diverse settings. The 
study’s four-year timeframe limits our understanding of long-
term system adaptability and effectiveness. While environmental 
benefits are clear, a comprehensive economic analysis is need-
ed to fully assess the return on investment. Additionally, further 
research is required to address the complexities of integrating 
AI systems with legacy HVAC infrastructure. We also recognize 
that the study did not fully account for potential alternative ener-
gy-saving measures that SISAB might have implemented without 
the AI solution.

Looking forward, we propose several key areas for future re-
search. These include conducting long-term performance and 
adaptability studies over 5-10 years, exploring integration with 
renewable energy systems and smart grids, investigating scal-
ability across diverse building types and climatic conditions, and 
analyzing comprehensive economic and social impacts, which 
are detailed in the section on the right.

Opportunities For Future Research

Based on the content of the study and the current state of AI-pow-
ered HVAC systems, here are four key ideas for future research 
to extend the present study:

1. Long-Term Performance and Adaptability

Longitudinal studies spanning 5-10 years are essential to rig-
orously assess the long-term performance and adaptability of 
AI-powered HVAC systems. These studies should monitor energy 
savings, system performance, and the evolution of AI models in 
response to changing building usage patterns and climate con-
ditions. Additionally, evaluating system resilience to major dis-
ruptions, such as renovations or occupancy changes, is crucial. 
This long-term perspective will provide valuable insights into the 
sustainability and effectiveness of AI-powered HVAC solutions 
throughout their lifecycle.

2. Integration with Renewables and Smart Grids

Future research should investigate the integration of AI-powered 
HVAC systems with renewable energy sources and smart grid 
technologies. This area of study would explore how these sys-
tems optimize operations in conjunction with on-site renewable 
energy generation, energy storage systems, and smart grids. 
Research should focus on balancing energy demand, maximiz-
ing renewable energy use, and contributing to grid stability. Such 
investigations could lead to more holistic and sustainable building 
energy management solutions aligned with broader clean energy 
initiatives.

3. Scalability Across Building Types and Climates

Further research is needed to explore the scalability and adapt-
ability of AI-powered HVAC systems across diverse building 
types and climatic conditions. While this study focused on ed-
ucational buildings in Stockholm, understanding system perfor-
mance in different contexts is crucial. Research should examine 
AI-powered HVAC implementation in residential, commercial, 
and industrial buildings across various climatic zones. This would 
help identify limitations and necessary adaptations for different 
building types and environments, informing the development of 
more versatile and widely applicable AI-HVAC solutions.

4. Comprehensive Economic and Social Impact Analysis

While our study demonstrates significant positive indirect effects 
on efficiency and carbon emissions in this specific case, suggest-
ing a favorable impact on overall costs, a detailed analysis of the 
return on investment in absolute terms has not yet been con-
ducted. This presents an important avenue for future research. 
A comprehensive economic analysis would provide valuable 
insights into the financial viability of AI-powered HVAC systems 
across different contexts, examining factors such as implemen-
tation costs, operational expenses, energy cost savings, and po-
tential revenue streams. Such research could explore how energy 
prices, regulations, and building characteristics affect economic 
outcomes, providing a balanced view of environmental and eco-
nomic factors. This financial perspective would complement our 
environmental findings, helping stakeholders make informed de-
cisions about adopting AI-powered HVAC technologies.

Future Research
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1. AI (Artificial Intelligence): Intelligent systems that can perform tasks typically requiring human intelligence, such as visual 
perception, speech recognition, decision-making, and language translation.

2. Allocation: Quantification of an organization’s GHG impact as a portion of the total net carbon impact of the solution.

3. Abiotic Resources Depletion: The consumption of non-living natural resources such as minerals and fossil fuels.

4. BAU (Business-as-usual): A scenario representing the normal execution of standard operations within an organization, particularly 
in environmental impact assessments.

5. BMS (Building Management System): A computer-based control system installed in buildings that controls and monitors 
mechanical and electrical equipment.

6. Carbon Emissions: The release of carbon dioxide and other carbon compounds into the atmosphere, primarily from burning fossil 
fuels.

7. Component: See ‘Solution component’.

8. Deep Reinforcement Learning: A machine learning technique where an agent learns to make decisions by interacting with an 
environment.

9. EEIO (Environmentally Extended Input-Output): An analytical method incorporating environmental impact data into economic 
input-output models.

10. EGDC (European Green Digital Coalition): A coalition of companies committed to supporting the green and digital transformation 
of the EU.

11. EGDC methodology: Term referring to the “Net Carbon Impact Assessment Methodology for ICT Solutions”.

12. Embodied emissions: Greenhouse gas emissions generated during the extraction, production, transport, and manufacturing 
stages of a product’s life, also termed as a cradle-to-gate footprint.

13. Energy Efficiency: The ratio of useful output of a process to the total energy input.

14. EU (European Union): A political and economic union of 27 member states located primarily in Europe.

15. EV (Electric Vehicle): A vehicle that uses one or more electric motors for propulsion.

16. Ex-ante assessment: A forward-looking assessment of a comparative impact expected to occur in the future.

17. Ex-post assessment: An assessment of a comparative impact that has occurred in the past.

18. First order effects: Direct emissions associated with the full life cycle of the implemented ICT solution.

19. Functional unit: The relative unit of emissions reductions selected for the assessment to describe the emissions reductions per 
unit of the solution.

20. GHG (Greenhouse Gas): Gases that absorb and emit infrared radiation, contributing to the greenhouse effect.

21. GHGP (Greenhouse Gas Protocol): A set of standardized frameworks for measuring and managing greenhouse gas emissions.

22. Global Warming Potential: A measure of how much heat a greenhouse gas traps in the atmosphere relative to carbon dioxide.

23. Higher order effects: Indirect impacts resulting from the deployment and use of the solution, requiring behavioral changes to have 
an impact.

24. HVAC (Heating, Ventilation, and Air Conditioning): Systems used to control temperature, humidity, and air quality in buildings.

25. ICT (Information and Communications Technology): Technologies used for handling telecommunications, broadcast media, 
intelligent building management systems, audiovisual processing and transmission systems, and network-based control and 
monitoring functions.

26. ICT infrastructure: ICT networks or services such as telecommunication network infrastructure, remote data storage, data 
processing, cloud computing, etc.

27. ICT solution: A system of ICT components encompassing ICT goods and infrastructure combined to deliver a specific service to 
the user.

28. ICT solution scenario: Scenario representing the implementation of the ICT solution.

29. IEA (International Energy Agency): An autonomous intergovernmental organization providing analysis, data, policy 
recommendations, and solutions to global energy challenges.
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30. Implementation context: Context in which the solution is implemented, including parameters describing the context in which the 
reference and ICT solution scenarios operate.

31. IoT (Internet of Things): A network of interconnected devices that can collect and exchange data.

32. ITU (International Telecommunication Union): The United Nations specialized agency for information and communication 
technologies.

33. KPI (Key Performance Indicator): A measurable value demonstrating how effectively a company is achieving key business 
objectives.

34. LCA (Life Cycle Assessment): The compilation and evaluation of inputs, outputs, and potential environmental impacts of a 
product system throughout its life cycle.

35. Machine Learning: A subset of AI focusing on developing algorithms that can learn from and make predictions or decisions based 
on data.

36. MPN (Mobile Private Network): A dedicated cellular network for a specific organization or location.

37. Net Carbon Impact: Comparison between the GHG impacts of a scenario with an ICT solution and a reference scenario without 
the ICT solution within the same boundary.

38. Net Carbon Impact Assessment: A quantitative and qualitative assessment comparing the GHG impacts of the selected solution-
ICT solution scenario and a reference scenario within the same boundary.

39. Net Digital Impact: A framework for assessing the overall environmental impact of digital solutions, considering both positive and 
negative effects.

40. Net environmental impact: Comparison between the environmental impacts of a scenario with an ICT solution and a reference 
scenario without the ICT solution within the same boundary.

41. Primary data: Data obtained directly from the ICT solution.

42. PV (Photovoltaic): A method of generating electrical power by converting solar radiation into direct current electricity using 
semiconductors.

43. Rebound effects: Long-term second order effects where efficiency improvements realized by the implemented solution 
subsequently cause an increase in system activity resulting in GHG emissions.

44. Reference activity: Activity forming the reference scenario to deliver the same service to the user as the ICT solution defined by 
the functional unit.

45. Reference scenario: Scenario reflecting the situation without the implementation of the ICT solution, comprised of reference 
activities that form the end-to-end process to deliver the same service as the ICT solution.

46. Secondary data: Data obtained from sources other than the ICT solution itself (e.g., literature review, national statistics, etc.)

47. Second order effects: The indirect emissions resulting from use of the solution or reference scenario.

48. Sector Methodologies: Set of methodologies providing further guidance on how the requirements in the EGDC methodology can 
be applied for specific sectors.

49. SISAB (Skolfastigheter i Stockholm AB): A municipal company responsible for operating and maintaining educational facilities in 
Stockholm, Sweden.

50. SOLIDA (SISAB On-Line Intelligent Data Analysis): The name given to the AI-powered HVAC optimization system implemented by 
SISAB.

51. Solution component: Individual elements or parts that make up the overall ICT solution.

52. tCO2e (Tonnes of Carbon Dioxide Equivalent): A metric measure used to compare emissions from various greenhouse gases 
based on their global warming potential.

53. WBCSD (World Business Council on Sustainable Development): A global, CEO-led organization of over 200 leading businesses 
working together to accelerate the transition to a sustainable world.

www.se.com Life Is On | Schneider Electric 22



AI-Powered HVAC in Educational Buildings

1. Net Impacts (Average Scenario):
> Climate Change: -250.65 t CO2 eq.
> Resource Use (Minerals and Metals): 0.14 kg SB eq.
> Fossil Resource Use: 158,177.43 MJ

2. Direct Effects:
AI System:
> Climate Change: 1.06 t CO2 eq.
> Resource Use (Minerals and Metals): 0.016713 kg SB eq.
> Fossil Resource Use: 33,321.39 MJ
IoT System:
> Climate Change: 0.14 t CO2 eq.
> Resource Use (Minerals and Metals): 0.006880 kg SB eq.
> Fossil Resource Use: 2,461.76 MJ
Networks:
> Climate Change: 0.01 t CO2 eq.
> Resource Use (Minerals and Metals): 0.000137 kg SB eq.
> Fossil Resource Use: 415.52 MJ
Subtotal (Direct Effects per year):
> Climate Change: 1.22 t CO2 eq.
> Resource Use (Minerals and Metals): 0.023730 kg SB eq.
> Fossil Resource Use: 36,198.67 MJ

3. Indirect Effects:
Optimization of HVAC Systems:
> Climate Change: -259.17 t CO2 eq.
> Resource Use (Minerals and Metals): N/A
> Fossil Resource Use: N/A

Faster Controllers Change (Average Scenario):
> Climate Change: 7.30 t CO2 eq.
> Resource Use (Minerals and Metals): 0.11 kg SB eq.
> Fossil Resource Use: 121,978.75 MJ

Subtotal (Indirect Effects per year):
> Climate Change: -251.87 t CO2 eq.
> Resource Use (Minerals and Metals): 0.11 kg SB eq.
> Fossil Resource Use: 121,978.75 MJ

4. Sensitivity Analysis:
Maximum Scenario (Faster Controller Change):
> Climate Change: -12.79 t CO2 eq.
> Resource Use (Minerals and Metals): 0.20 kg SB eq.
> Fossil Resource Use: 213,770.16 MJ

Net Impacts (Max Scenario on Controllers):
> Climate Change: 245.16 t CO2 eq.
> Resource Use (Minerals and Metals): 0.224345 kg SB eq.
> Fossil Resource Use: 249,968.83 MJ

Higher IoT System Allocation:
> Climate Change: 0.63 t CO2 eq.
> Resource Use (Minerals and Metals): 0.00003 kg SB eq.
> Fossil Resource Use: 11.03 MJ

Net Impacts (Max Allocation of IoT System):
> Climate Change: 250.16 t CO2 eq.
> Resource Use (Minerals and Metals): 0.131353 kg SB eq.
 >Fossil Resource Use: 155,726.70 MJ

Higher Data Traffic (333.8 MB Input Data Per Day for Training per 
> Property, 3.62 MB Per Day for Inference per Property):
> Climate Change: 1.43 t CO2 eq.
> Resource Use (Minerals and Metals): 0.01 kg SB eq.
> Fossil Resource Use: 41,552.19 MJ

Net Impacts (Higher Data Traffic):
> Climate Change: 249.24 t CO2 eq.
> Resource Use (Minerals and Metals): 0.148066 kg SB eq.
> Fossil Resource Use: 199,314.10 MJ
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1. Data Center (DC) Configuration:
> PUE: 1.17
> Hardware Life Expectancy (hours): 43,800
> Hardware Life Expectancy (years): 5

2. Server Configuration (Platform):
> Name: Edsv4-Type1 Azure
> Manufacturer: Intel
> CPU Units: 2
> CPU Core Units: 52
> CPU Die Size [cm²]: 19.1
> CPU Name: Intel Xeon Platinum 8272CL
> vCPU: 64
> RAM Units: 8
> RAM Capacity [GB]: 63
> RAM Density [GB/cm²]: 8
> SSD Units: 2
> SSD Capacity [GB]: 2048
> SSD Density [GB/cm²]: 19
> PSU Count: 2
> PSU Weight [kg]: 3

3. Training VM Configuration (Instance):
> Name: standard_e8ds_v4
> vCPU: 8
> RAM [GB]: 64
> SSD [GB]: 300
> HDD [GB]: 0
> GPU: 0
> Platform: Edsv4-Type1

4. Power Consumption:
> Power Consumption for CPU [W]: 259.17
> Power Consumption for RAM [W]: 272.16
> Power Consumption for SSD [W]: 11.4
> Total Power [W]: 651.28

5. VM Training & Inference Node Per Year:
> Total for Training Node [per year]: 431.34 kg CO2 eq, 8.09E-03 
kg SB eq, 13,344.15 MJ
> Total for Inference Node [per year]: 629.92 kg CO2 eq, 8.62E-
03 kg SB eq, 19,977.24 MJ

6. Total AI System Per Year:
> Total for AI System [per year]: 1061.26 kg CO2 eq, 0.017 kg 
SB eq, 33,321.39 MJ

7. IoT System Configuration:
> Sensor Configuration (Ecoguard THS-1002-1):
> Number of Units: 9,901
> Total Climate Change Impact [kg CO2 eq.]: 1.87 per unit, 
323.01 for all units per year
> Total Resource Use (Minerals & Metals) [kg SB eq.]: 9.98E-05 
per unit, 0.0662 for all units per year
> Total Fossil Resource Use [MJ]: 33.08 per unit, 23,282.39 for 
all units per year
> Lifespan [years]: 15
> Gateway Configuration (Ecoguard AR-0002-1):
> Number of Units: 103
> Total Climate Change Impact [kg CO2 eq.]: 10.9 per unit, 
80.48 for all units per year
> Total Resource Use (Minerals & Metals) [kg SB eq.]: 3.67E-04 
per unit, 0.0026 for all units per year
> Total Fossil Resource Use [MJ]: 182 per unit, 1,335.22 for all 
units per year
> Lifespan [years]: 15

8. Networks Configuration:
> Training Transmission Per Day [GB]: 0.3338 GB
> Inference Transmission Per Day [GB]: 0.00362 GB
> Climate Change Impact for Data Transmission [kg CO2 eq.]: 
14.38 per year
> Resource Use (Minerals & Metals) [kg SB eq.]: 0.00014 per 
year
> Fossil Resource Use for Data Transmission [MJ]: 415.52 per 
year

9. Allocation Factor for IoT System:
> Allocation Factor: 10% of the IoT system impacts are allocated 
to the AI system.

10. Total Impact for AI System (Allocated):
> Climate Change [kg CO2 eq.]: 140.35
> Resource Use (Minerals & Metals) [kg SB eq.]: 0.0069
> Fossil Resource Use [MJ]: 2,461.76

11. Total Impact for Networks:
> Climate Change [kg CO2 eq.]: 14.38
> Resource Use (Minerals & Metals) [kg SB eq.]: 0.00014
> Fossil Resource Use [MJ]: 415.52
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Optimization Effect on HVAC Systems
> Unit: MWh

Total District Heating Consumption of Buildings:
> Reference Scenario [2019]: 76,586 MWh
> Scenario with Solution [2023]: 74,198 MWh
> Reduction: -3.12%

Total Electricity Consumption of Buildings:
> Reference Scenario [2019]: 39,489 MWh
> Scenario with Solution [2023]: 35,962 MWh
> Reduction: -8.93%

Carbon Intensity of District Heating:
> 61 kgCO2e/MWh (Reference Scenario)
> 46 kgCO2e/MWh (Scenario with Solution)

Carbon Intensity of Power Grid:
> 42.3 kgCO2e/MWh (both scenarios)

Saved Carbon Emissions:
From District Heating:
> 109.87 tCO2e
From Electricity:
> 149.30 tCO2e
Total Saved Carbon Emissions:
> 259.17 tCO2e

Faster Controllers Change Due to Memory Writing Limit
Controller Configuration:
> Number of Third-Party Controllers: 753
> Lifespan of Controller: 10 years

Memory Configuration:
> EPROM Writing Limit: 100,000 writes
> Life Cycle Impacts of One Third-Party Controller
> kg CO2 eq.: 67.83 kg
> kg SB eq.: 0.00 kg
> MJ: 1,133.75 MJ

Reference Scenario Configuration
> Number of Writes per Year: 12
> Theoretical Lifespan of Controller Memory (years): 8,333.33 
years
> Average Lifespan of Controller: 10 years

Total Impacts for All Controllers [Life Cycle]
>kg CO2 eq.: 51,077.50 kg
> kg SB eq.: 0.80 kg
> MJ: 853,714.69 MJ

Scenario with Solution Configuration
> Number of Writes per Year:
> Scenario Max: 35,040
> Scenario Average: 24,288
> Scenario Min: 12,144

Theoretical Lifespan of Controller Memory (years):
> Scenario Max: 2.85 years
> Scenario Average: 4.12 years
> Scenario Min: 8.23 years

Obsolescence Factor:
> Scenario Max: 3.50
> Scenario Average: 2.43
> Scenario Min: 1.21

Total Impacts for All Controllers [Life Cycle]
Scenario Max:
> kg CO2 eq.: 178,975.55 kg
> kg SB eq.: 2.81 kg
> MJ: 2,991,416.26 MJ

Scenario Average:
> kg CO2 eq.: 124,057.02 kg
> kg SB eq.: 1.95 kg
> MJ: 2,073,502.23 MJ

Scenario Min:
> kg CO2 eq.: 62,028.51 kg
> kg SB eq.: 0.97 kg
> MJ: 1,036,751.11 MJ

Results for Total Added Impacts per Year
Scenario Max:
> t CO2 eq.: 12.79 t
> kg SB eq.: 0.20 kg
> MJ: 213,770.16 MJ

Scenario Average:
> t CO2 eq.: 7.30 t
> kg SB eq.: 0.11 kg
> MJ: 121,978.75 MJ

Scenario Min:
> t CO2 eq.:1.10 t
> kg SB eq.:0.02kg
> MJ:18,303.64MJ
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Compliance with Existing Methodologies

Exhibit 13. Compliance with Existing Methodologies

This study ITU-T L.1480 Net Carbon Impact Assessment

Scope Single solution for a given 
implementation context

Compatible when evaluating 
a single solution proposed by 
the method (clause 11)

Compatible with the evaluation 
of a solution in a specific context 
(non-portfolio cases)

Perspective Company-level Compatible Compatible

Deployment of the solution Stockholm (120 properties), 
since 2020

Compatible Compatible

Temporal perspective Ex-post Compatible Compatible

Reference scenario Business-as-usual Compatible but not 
recommended

Not compatible

Assessment depth Identification of all indirect 
effects with a consequence 
tree and modelling of two 
indirect effects

Equivalent to Tier 2 Compatible

ICT solution assessment Full life cycle Compatible Compatible

Indirect effects assessment Optimisation, Induction 
(obsolesence effect)

Compatible Compatible

Sensitivity analysis Yes Recommended Recommended

Uncertainity analysis No Compatible Compatible

Communication Yes (Research Paper) Compatible Compatible

Critical review No Compatible Compatible



AI-Powered HVAC in Educational Buildings

www.se.com Life Is On | Schneider Electric 27

Disclosure for the Net Impact Assessment

Exhibit 14. Disclosure for the Net Impact Assessment of the solution

This study

Description of the solution An AI solution integrated into a BMS allows the temperature and airflows in each building to be 
adjusted more frequently and more precisely.

Deployment of the solution The solution has been deployed since 2020 in 120 properties in Stockholm managed by SISAB.

Functional unit Heating and air conditioning the buildings at the set temperature and airflow rates for 1 year.

Reference scenario Business-as-usual, it was not possible to determine and quantify what SISAB would have invested 
in reducing the energy consumption of its buildings.

Components of the solution BMS system (third-party controllers), IoT system, AI system

Categorisation of digital 
technologies

A, B

Description of calculation The AI system was analysed on the basis of the instances used for model training and inference. 
A share of the IoT system that provided the training data is allocated to the solution. The impact 
on the network has been modelled on the basis of the data flow. Optimisation was calculated on 
the basis of actual consumption data supplied by SISAB. The impact of the AI system on the faster 
renewal of controllers is modelled using data provided by Schneider and an obsolescence factor 
compared with the reference scenario.

Net Impact of the Solution The net positive impact on the GWP indicator is 250.65  tCO2e.

Assumptions The two instances for the AI system are considered as CPU instances instead of a CPU and GPU 
instance. The IoT system allocation is set to 10%. The electricity mix used for modelling the AI 
system and the network part is the average European mix. The lifecycle footprint of a controller is 
defined on the basis of the average impact data for a range of controllers.

Data sources Schneider Electric, SISAB, Boavizta, NegaOctet, Base Empreinte
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Legal Disclaimer

The contents of this publication are presented for informational 
purposes only. While every effort has been made to ensure ac-
curacy, this publication is not intended as investment or strategic 
advice. The assumptions, models, and conclusions presented 
here represent one possible scenario and are inherently de-
pendent on many factors beyond our control, including but not 
limited to governmental actions, climate conditions, geopolitical 
considerations, and technological advancements. 
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“It is better to light a candle than to curse the darkness” - Eleanor Roosevelt

Nation states and corporations are increasingly making climate pledges and including sustainability themes in their gov-
ernance. Yet, progress is nowhere near where it should be. For global society to achieve these goals, more action and 
speed is needed.

How can we convert momentum into reality?

By aligning action with United Nations Sustainable Development Goals. By leveraging scientific research and technology. 
By gaining a better understanding of the future of energy and industry, and of the social, environmental, technological, 
and geopolitical shifts happening all around us. By reinforcing the legislative and financial drivers that can galvanize more 
action. And by being clear on what the private and public sectors can do to make all this happen.

The mission of the Schneider Electric™ Sustainability Research Institute is to examine the facts, issues, and possibilities, 
to analyze local contexts, and to understand what businesses, societies, and governments can and should do more of. 
We aim to make sense of current and future trends that affect the energy, business, and behavioral landscape to antici-
pate challenges and opportunities. Through this lens, we contribute differentiated and actionable insights.

We build our work on regular exchanges with institutional, academic, and research experts, collaborating with them on 
research projects where relevant. Our findings are publicly available online, and our experts regularly speak at forums to 
share their insights.

Set up in 2020, our team is part of Schneider Electric, the leader in the digital transformation of energy management and 
automation, whose purpose is to bridge progress and sustainability for all.

Global awareness of the need for a more inclusive and climate-
positive world is at an all-time high. This includes reducing 
carbon emissions and preventing environmental damage and 
biodiversity loss.
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