Aalto-yliopisto

Vihapuhetta tunnistavat tekoälyt menevät sekaisin ”rakkaudesta”

Jaa
Tutkijat osoittivat, että sosiaalisessa mediassa ja verkkopalveluissa käytettävät vihapuheentunnistimet ovat helposti ihmisten huijattavissa.
Google Perspective arvioi verkkokommentteja loukkaavuuden perusteella. Vihapuheeksi alun perin tunnistettu lause läpäisee seulan, kun se sotketaan kirjoitusvirheellä ja sanalla ’rakkaus’.
Google Perspective arvioi verkkokommentteja loukkaavuuden perusteella. Vihapuheeksi alun perin tunnistettu lause läpäisee seulan, kun se sotketaan kirjoitusvirheellä ja sanalla ’rakkaus’.

Vihapuheen ja loukkaavan kommentoinnin määrä verkossa vain kasvaa. Sen hillitsemiseksi tarvitaan automaattisia työkaluja, jotka tunnistavat verkkopalvelujen sääntöjen vastaisen tai jopa laittoman sisällön.

Nyt Aalto-yliopiston Secure Systems -tutkimusryhmä on kuitenkin löytänyt parhaistakin koneoppimiseen perustuvista vihapuheentunnistimista merkittäviä heikkouksia. Käyttäjien on yllättävän helppo kiertää vihapuheen suitsemiseen kehitettyjä tekoälytyökaluja. Tarkoituksellinen tai tahaton huono kielioppi ja kirjoitusvirheet voivat tehdä vihanlietsonnasta ja loukkauksista tekoälylle vaikeita tunnistaa.

Ryhmä kokeili seitsemän uuden tunnistamistyökalun tarkkuutta. Kaikki reputtivat testit.

Nykyaikaiset luonnollisen kielen prosessointiin käytetyt mallit pystyvät luokittelemaan tekstiä merkkien, sanojen ja lauseiden piirteiden perusteella. Kun mallit joutuvat analysoimaan tekstidataa, jollaista ei ole käytetty niiden opettamiseen, tulosten laatu alkaa kärsiä.

”Lisäsimme vihapuheeksi tai loukkaavaksi määriteltyjen kommenttien sekaan kirjoitusvirheitä, muokkasimme sanojen rajoja tai lisäsimme joukkoon neutraaleja sanoja. Välilyöntien poistaminen sanojen välistä osoittautui englanninkielisen sisällön manipuloinnissa tehokkaimmaksi. Kaikkia keinoja yhdistelemällä saimme jopa Googlen kommenttien arvottamiseen käyttämän Perspective-työkalun sekaisin”, kertoo Tommi Gröndahl, Aalto-yliopiston tohtorikoulutettava.

Google Perspective luokittelee kommenttien loukkaavuutta tai ”toksisuutta” eri tekstianalyysin menetelmien avulla. Vuonna 2017 Washingtonin yliopiston tutkijat osoittivat, että Perspectiveä voi kuitenkin huijata lisäämällä tekstiin pieniä kirjoitusvirheitä.

Gröndahl havaitsi kollegoineen, että Perspective on sittemmin oppinut tunnistamaan myös kirjoitusvirheet, mutta se on edelleen huijattavissa muunlaisella manipuloinnilla, esimerkiksi poistamalla välilyöntejä ja lisäämällä harmittomia sanoja, kuten love, ’rakkaus’.

Perspectiven ja monen muun edistyneen vihapuheentunnistimen seulan läpäisi esimerkiksi lause ”I hate you” (”minä vihaan sinua”), kun se muokattiin muotoon ”Ihateyou love”.

Tutkijat huomauttavat, että asiayhteys määrittää pitkälti sen, tulkitaanko yksittäinen kommentti vihaksi vai vain asiattomaksi tai mauttomaksi. Vihapuhe on subjektiivista ja kontekstisidonnaista, ja tutkijoiden mukaan pelkät koneelliset tekstianalyysimenetelmät eivät riitä sen tarkkaan tunnistamiseen.

”Ihmiset muuttavat toimintaansa ja alkavat kokeilla eri tapoja kirjoittaa, koska he haluavat välttää kiinnijäämistä. Ollakseen tehokas tekoäly tarvitsee avukseen ihmisen tekemää tulkintaa”, uskoo tutkimusryhmän johtaja, Aalto-yliopiston professori N. Asokan.

Tekstiä analysoivien koneoppimismallien kehittämisessä tulisi tutkijoiden mukaan kiinnittää huomiota mallien opettamiseen käytettävän datan laatuun ja monipuolisuuteen, eikä niinkään mallien rakenteiden hiomiseen.

Ryhmän tulokset osoittavat myös, että vihapuheentunnistimet voisivat olla nykyistä tarkempia, jos ne analysoisivat tekstiä yksittäisten merkkien ja niiden yhdistelmien tasolla. Lisäksi kommenttien kontekstin luokittelua pitäisi saada hienovaraisemmaksi, jotta mallit osaisivat erottaa toisistaan esimerkiksi rasismin, seksismin ja henkilökohtaiset hyökkäykset.

Tutkimus tehtiin yhteistyössä Aalto-yliopiston Secure Systems -ryhmän ja Padovan yliopiston tutkijoiden kanssa. Tulokset esitellään lokakuussa ACM AISec -konferenssissa Torontossa.

Ryhmän artikkeli ”All You Need is "Love": Evading Hate-speech Detection” on osa Aalto-yliopiston Secure Systems -ryhmän projektia, joka tutkii tekstianalyysin keinoin valheellisen tai vilpillisen sisällön tunnistamista verkossa.

Tutkimusartikkeli:
Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti, N.Asokan:
All You Need is "Love": Evading Hate-speech Detection.
https://arxiv.org/abs/1808.09115

Avainsanat

Yhteyshenkilöt

Tommi Gröndahl, tohtorikoulutettava
Aalto-yliopisto
Secure Systems -ryhmä
tommi.grondahl@aalto.fi
puh. 0400 426 523


N. Asokan, professori
Aalto-yliopisto
Secure Systems -ryhmä
n.asokan@aalto.fi
puh. 050 483 6465

Kuvat

Google Perspective arvioi verkkokommentteja loukkaavuuden perusteella. Vihapuheeksi alun perin tunnistettu lause läpäisee seulan, kun se sotketaan kirjoitusvirheellä ja sanalla ’rakkaus’.
Google Perspective arvioi verkkokommentteja loukkaavuuden perusteella. Vihapuheeksi alun perin tunnistettu lause läpäisee seulan, kun se sotketaan kirjoitusvirheellä ja sanalla ’rakkaus’.
Lataa

Linkit

Tietoja julkaisijasta

Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu noin 13 000 opiskelijaa ja yli 4 500 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.

aalto.fi

facebook.com/aaltouniversity

twitter.com/aaltouniversity

youtube.com/aaltouniversity

 

Tilaa tiedotteet sähköpostiisi

Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.

Lue lisää julkaisijalta Aalto-yliopisto

Millainen luonto elvyttää? Aalto-yliopiston tutkijat avaavat erilaisten viherympäristöjen elvyttävyyden näkyviä ja näkymättömiä piirteitä21.11.2024 10:30:09 EET | Tiedote

Lähellä oleva luonto tekee hyvää – mutta miksi ja miten? Maisema-arkkitehtuurin tutkijat pureutuvat tuoreessa tutkimuksessaan viherympäristöjen elvyttävyyteen selvittämällä mitkä näkyvät ja näkymättömät ominaisuudet suomalaisissa metsissä ja toisaalta japanilaisissa puutarhoissa tukevat ihmisten elpymistä.

Yhä harvempi yliopisto-opiskelija jää kotiseudulleen Suomen suurimmissa kaupungeissa – uusi selvitys näyttää kaupunkikohtaiset erot20.11.2024 09:45:00 EET | Tiedote

Aalto-yliopiston kaupunkitaloustieteen tutkimusryhmä AlueAvain on tarkastellut Tilastokeskuksen yksilötason rekisteriaineistojen avulla yliopisto-opiskelijoiden muuttoliikkeitä Suomen suurimmissa kaupungeissa viimeisten 20 vuoden aikana. Tarkastelussa vertailtiin erikseen pääkaupunkiseudun kuntia sekä Tamperetta, Turkua ja Oulua.

Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.

Tutustu uutishuoneeseemme
World GlobeA line styled icon from Orion Icon Library.HiddenA line styled icon from Orion Icon Library.Eye