Tekoäly auttaa tunnistamaan diabeteksen aiheuttaman silmäsairauden – kielimallien käyttö lääketieteessä lisääntyy
Kymmenien tuhansien jäsentelemättömien seurantatutkimusten lausuntojen avulla kielimalli opetettiin tunnistamaan diabeettisen retinopatian vaikeusaste tarkasti. Tutkimustulos voi jatkossa mahdollistaa monia uusia sovelluksia erilaisissa seulontaohjelmissa ja diagnostiikassa.
Tutkijat ovat onnistuneet soveltamaan suuria kielimalleja diabeettisen retinopatian eli diabeteksen aiheuttaman verkkokalvon sairauden tunnistamisessa sekä vakavuusasteen luokittelussa seurantatutkimusten jäsentelemättömistä lausunnoista. Tämä antaa mahdollisuuksia kielimallien entistä laajempaan käyttöön myös muissa jäsentelemättömissä lääketieteellisissä aineistoissa.
Tekoälyä käytetään jo nyt esimerkiksi sairauksien diagnosoinnissa, potilaiden seurannassa ja terveydenhuollon resurssien suunnittelussa. Suuret kielimallit, kuten ChatGPT tai Bard taas ovat lyöneet itsensä läpi suuren yleisön tietoisuuteen esimerkiksi eri työtehtäviä helpottavina työkaluina. Terveydenhuollossa kielimalleja kehitetään erilaisiin automaattisiin tekstinluokittelutehtäviin, kuten vaikka merkittävien löydösten poimintaan röntgenraporteista.
Professori Kimmo Kasken vetämän tutkimusryhmän yhtenä päätavoitteena on jo pidempään ollut juuri silmäsairauksien tekoälypohjainen tunnistaminen, ryhmään kuuluva tutkijatohtori Joel Jaskari kertoo. Tutkimusryhmän tutkijat ovatkin aiemmin tutkineet kuva-analyysiin tarkoitettuja tekoälymalleja, niin kutsuttuja syviä konvoluutioneuroverkkoja, diabeettisen retinopatian vakavuustason tunnistamiseen silmänpohjakuvista.
”Diabeettinen retinopatia vaikuttaa isoon osaan diabetesta sairastavista potilaista. Se voi pahimmillaan johtaa sokeuteen, jos sitä ei päästä hoitamaan riittävän ajoissa. Niinpä verkkokalvon sairauden aikainen tunnistaminen on todella tärkeää”, Jaskari toteaa.
Diabeteksen aiheuttaman verkkokalvon sairauden seulontaan käytetään silmäpohjakuvauksia, jonka löydökset, mukaan lukien sairauden vakavuus, kirjataan silmänpohjantutkimuksen lausuntoon. Tarkempi tilastollinen analyysi diabeettisen retinopatian ilmenemis- ja vaikeusasteesta vaatii kuitenkin tarkkaan jäsenneltyjä merkintöjä sekä työlästä merkintäprosessia, sillä Jaskarin mukaan Helsingin yliopistollisen sairaalan HUS:in käytäntönä on aiemmin ollut silmänpohjakuvien lausuntojen tekeminen seikkaperäisesti vapaalla tekstillä.
Tekoälyn koulutukseen käytettiin yli 40 000:ta potilaskertomusta Helsingin yliopistollisen sairaalan erikoissairaanhoidon käynneistä vuosilta 2016–2019. Käynneillä potilaan silmäpohjat kuvattiin, ja lääkäri kirjasi havainnot merkittävistä löydöksistä, kuten diabeettisen retinopatian merkeistä ja vaikeusasteesta, jäsentelemättömään lausuntoonsa.
Tutkijat tarvitsevat HUS:in kaltaisia yhteistyökumppaneita, kun tekoälyä opetetaan suomalaisen terveydenhuollon apuriksi, Jaskari muistuttaa. Internetistä löytyy useita diabeettisen retinopatian aineistoja tutkijoiden käyttöön, mutta nämä eivät kerro Suomen väestöstä tai suomalaisista hoitokäytännöstä mitään. Lisäksi kotimaisessa terveydenhuollossa syntyy riittävän laajoja aineistoja tutkijoiden hyödynnettäväksi – näiden avulla tekoäly voidaan kouluttaa hyödyttämään juuri Suomen terveydenhuoltoa.
”Nykyiset syviin neuroverkkoihin pohjautuvat tekoälymenetelmät, kuten GPT-mallit, ovat lähtökohtaisesti datavetoisia, eli niitä täytyy kouluttaa niiden lopulliseen tehtävään liittyvillä aineistoilla. Siksi tämänkaltainen yhteistyö on avainasemassa, kun tutkitaan tekoälyä lääketieteessä”, Jaskari sanookin.
Vapaamuotoisista, jäsentelemättömistä lääketieteellisistä lausunnoista on todella vaikeaa, ellei jopa mahdotonta saada perinteisellä ohjelmoinnilla automaattisesti selville retinopatian vaikeusastetta. Jaskarin mukaan projektiin osallistuneet lääkärit ja hoitajat olivat analysoineet noin puolet aineiston lausunnoista, kunnes syntyi idea kouluttaa suuria kielimalleja loppujen lausuntojen analysointiin.
”Muokkasimme ja jatkokoulutimme Turun yliopiston NLP-ryhmän suomen kielellä kouluttamaa GPT-mallia näillä jo analysoiduilla lausunnoilla, niin että sen tulisi päätellä sama diabeettisen retinopatian vaikeusaste lausunnosta kuin minkä ammattilaiset olivat kirjanneet ylös. Kutsuimme tätä diabeettisen retinopatian vaikeustason päättelyyn erikoistunutta GPT-mallia DR-GPT:ksi”, Jaskari kertoo.
Tutkimuksen tuloksena havaittiin, että DR-GPT kykenee analysoimaan vapaamuotoisia suomenkielisiä lääketieteellisiä lausuntoja todella tarkasti. Kielimallin tekemiä analyysejä hyödynnettiin loppuun aineistoon, ja tämä – yhdessä ammattilaisten analysoiman aineiston kanssa – muodosti lopulta yhden suuren aineiston kuvapohjaisen tekoälyn kouluttamiseen. Lisäaineiston havaittiin parantavan kuvapohjaisen tekoälyn toimintakykyä.
Tutkimus osoittaa, että suomen kielellä koulutetut suuret kielimallit pääsevät erinomaisiin tuloksiin suomenkielisten aineistojen analysoinnissa, Jaskari sanoo. Päätelmää tukee myös se, että DR-GPT pystyi tarkkoihin tuloksiin jäsentelemättömien lääketieteellisten potilaslausuntojen kaltaisesta haastavasta aineistosta.
”En näe syytä, miksi DR-GPT:n kaltaista lähestymistapaa ei pystyttäisi hyödyntämään myös muissa lääketieteellisissä aineistoissa. Itseasiassa tämä GPT-mallien jatkokouluttaminen on niin mukautuva lähestymistapa, että uskoisin vastaavanlaisten suomenkielisten tekoälymallien kouluttamisen olevan mahdollista myös moniin muihin tarkoituksiin”, Jaskari sanookin.
Tutkimus on julkaistu arvostetussa PLOS One -tiedelehdessä lokakuussa.
Avainsanat
Yhteyshenkilöt
Joel Jaskari
Tutkijatohtori, Aalto-yliopisto
joel.jaskari@aalto.fi
Linkit
Tietoa julkaisijasta
Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu noin 13 000 opiskelijaa ja yli 4 500 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.
Tilaa tiedotteet sähköpostiisi
Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.
Lue lisää julkaisijalta Aalto-yliopisto
Millainen luonto elvyttää? Aalto-yliopiston tutkijat avaavat erilaisten viherympäristöjen elvyttävyyden näkyviä ja näkymättömiä piirteitä21.11.2024 10:30:09 EET | Tiedote
Lähellä oleva luonto tekee hyvää – mutta miksi ja miten? Maisema-arkkitehtuurin tutkijat pureutuvat tuoreessa tutkimuksessaan viherympäristöjen elvyttävyyteen selvittämällä mitkä näkyvät ja näkymättömät ominaisuudet suomalaisissa metsissä ja toisaalta japanilaisissa puutarhoissa tukevat ihmisten elpymistä.
Yhä harvempi yliopisto-opiskelija jää kotiseudulleen Suomen suurimmissa kaupungeissa – uusi selvitys näyttää kaupunkikohtaiset erot20.11.2024 09:45:00 EET | Tiedote
Aalto-yliopiston kaupunkitaloustieteen tutkimusryhmä AlueAvain on tarkastellut Tilastokeskuksen yksilötason rekisteriaineistojen avulla yliopisto-opiskelijoiden muuttoliikkeitä Suomen suurimmissa kaupungeissa viimeisten 20 vuoden aikana. Tarkastelussa vertailtiin erikseen pääkaupunkiseudun kuntia sekä Tamperetta, Turkua ja Oulua.
Uusi teknologia tuo immersiivisen tilaäänen kaikkien ulottuville20.11.2024 07:47:00 EET | Tiedote
Tutkijat ovat kehittäneet ainutlaatuisen äänentallennusteknologian, joka mahdollistaa immersiivisen äänimaailman tallentamisen tavallisilla mikrofoneilla ja edullisella lisälaitteella.
Tutkijoiden kehittämä menetelmä mullistaa sähköautojen akkujen kierrätyksen19.11.2024 07:30:00 EET | Tiedote
Uuden teknologian avulla käytetyt litiumakut voidaan kierrättää turvallisesti ja ympäristöystävällisesti, ja esimerkiksi litiumin talteenottoaste voidaan nostaa muutamista prosenteista jopa yli 70 prosenttiin.
Virtuaalinen synnytysvalmentaja auttaa kohtaamaan synnytyspelkoa18.11.2024 13:03:28 EET | Tiedote
Ensimmäisten tulosten perusteella synnytyspelko on vähäisempää uuden Natal Mind -sovelluksen käyttäjillä kuin kontrolliryhmässä. Tutkimus on kuitenkin vielä kesken.
Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.
Tutustu uutishuoneeseemme